ForestInsights

Mapping New Zealand's forests through deep learning and data-centric Al

Melanie Palmer Pearse G., Steer B., Camarretta N., Jayathunga S., Watt M.

New Zealand's goal: Net Zero 2050

- Net zero greenhouse gas emissions by 2050
- Forests are a key part of Emissions Trading Scheme
- 1.8 million ha commercial forest land
 - Around 90% radiata pine
- Significant afforestation required to meet emission reduction targets
- Growing importance of smaller growers and landowners
- Effective planning, forecasting, and policy-making relies on accurate data

Existing approaches and limitations

- National Exotic Forest Description (NEFD)
 - Survey-based
 - Limited coverage of small-scale forests
 - Lacks spatially explicit data
- Land Cover Database (LCDB)
 - Approx. 5-yearly update interval
 - Satellite-based (Sentinel-2)
 - Resolution is challenging for woodlots, seedlings, species ID

Landcover Database v5.0

Size (ha)	Survey Frequency	Data Quality	Number of Owners	Net Stocked Area (000 ha)	Proportion of Total Area (%)
1,000+ ha	Annually	High	98	1,247	69.7
40-999 ha	Every two years	Medium	1,671	260	14.5
<40 ha	Infrequently	Low	>10,000	283	15.8

Summary of data collected for the National Exotic Forest Description by forest size. Adapted from 2023 NEFD Report

A new approach for mapping NZ's forests

- Regional fixed-wing aerial imagery
 - Routinely captured by councils
 - High resolution: 15 30 cm
- LINZ National Elevation Programme
 - Regional LiDAR
- Deep learning -- Lots of data!

Generating a training dataset

- Representative training samples gathered from across the North Island
- 1220 1:1k tiles
- 430 km² labelled area
- Large variety of forest examples
 - Age
 - Planting regimes
 - Different landscapes

Generating a training dataset

- Hand-labelled using Computer Vision Annotation Tool (CVAT)
- Semantic segmentation
 - Each pixel is labelled
 - High level of detail
 - Exclude interior gaps

Generating a training dataset

Challenges

- Diverse visual characteristics
 - Variation in camera sensors and capture conditions
 - Time of year or day
 - Clouds and shadows
- Determining species
 - Subtle differences
 - Can vary widely

Generating a training dataset

Challenges

- How to define 'forest'?
 - Dispersed
 - Wilding
 - Shelterbelts
 - Gardens

Generating a training dataset

Challenges

- Seedlings
 - Hard to see
 - Where to define boundary?
 - Weeds

ForestInsights current dataset

Classes

- Radiata (mature)
- Juvenile (seedlings)
- Other species
 - Douglas fir
 - Eucalypt
 - Other exotic spp.
- Harvested
- Background

Training deep learning model

 Binary classification model for radiata detection

Classes

Foreground

- Radiata (mature)
- Juvenile (seedlings)

Background

- Other species
- Harvested
- Background

Training deep learning model

- DeepLabV3+ with ResNext-101 backbone implemented in PyTorch
- Well defined delineation of radiata across a range of contexts
- Level of detail frequently exceeded ground truth masks

Metric	Validation (15%)	Test (15%)
loU	0.934	0.937
Accuracy	0.978	0.980
Precision	0.956	0.957
Recall	0.975	0.977
F1 Score	0.966	0.967

My model is doing great!

Wait... hang on...

- False positives/negatives
- Unfamiliar/poor quality imagery conditions
- Unknown features

- Wildings
- Abandoned/unmanaged stands
- Dispersed planting

- Wildings
- Abandoned/unmanaged stands
- Dispersed planting

Non-radiata species

- Cyclone Gabrielle
- Windthrow
- Damaged trees

Data-centric Al

"The "dirty secret" of artificial intelligence is that getting the software to work well in the real world requires a large amount of high-quality data."

- Alexander Wang, Founder & CEO Scale AI in an interview with Fortune

Iterative dataset development

- Proof of concept → 5th iteration of the model
- Over double the size of initial dataset
- Targeted approach based on previous iteration performance
 - Inclusion of 'hard tiles'
 - Hard negative mining
- Dataset refinement

Data-centric Al

Iterative dataset development

- Image embeddings
 - Refine or re-enforce labels
 - Interrogate the model: loss vs embedding
- Error correction, mislabelling, consistency
- Find rare/under-represented examples
- Targeted labelling
 - Low-confidence areas
 - Areas of confusion
 - Address class imbalance
 - Future inference imagery

Inference

Model deployed over regional imagery

- Auckland
- Waikato
- Bay of Plenty
- Gisborne
- Hawkes Bay
- Taranaki
- Manawatū-Whanganui
- Wellington

Over 1mil ha mapped!

www.forestinsights.nz

Where to next?

- More regional inference
 - Northland
 - South Island
- Expand dataset
 - Targeted improvement
 - South Island imagery
- Other species & Multi-class model
 - Douglas fir
 - Eucalyptus
 - Redwood
 - Cypress

Melanie Palmer melanie.palmer@scionresearch.com forestinsights.nz

www.scionresearch.com

19 November 2024

